Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hossein Aghabozorg,^a* Fatemeh Zabihi,^a Mohammad Ghadermazi,^a Jafar Attar Gharamaleki^a and Shabnam Sheshmani^b

^aDepartment of Chemistry, Teacher Training University, 49 Mofateh Avenue, 15614 Tehran, Iran, and ^bDepartment of Chemistry, Islamic Azad University, Shahr-e Rey Branch, Tehran, Iran

Correspondence e-mail: aghabozorg@saba.tmu.ac.ir

Key indicators

Single-crystal X-ray study T = 120 KMean σ (C–C) = 0.002 Å R factor = 0.033 wR factor = 0.097 Data-to-parameter ratio = 20.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Piperazinediium bis(pyridine-2,6-dicarboxylato)cuprate(II) tetrahydrate

The reaction of copper(II) nitrate with the proton-transfer compound piperazinediium pyridine-2,6-dicarboxylate, or (pipzH₂)(pydc), in aqueous solution leads to the formation of the title compound, $(C_4H_{12}N_2)[Cu(C_7H_3NO_4)_2]\cdot4H_2O$. The title compound is a six-coordinate complex with a distorted octahedral geometry around the central atom. In the crystal structure, a wide range of non-covalent interactions consisting of hydrogen bonding and π - π stacking connect the various components into a supramolecular structure.

Comment

There are several studies on proton transfer between a carboxylic acid and a heterocyclic amine. Continuing our research on proton-transfer systems, we have now found a route to combine a carboxylic acid with an amine and produce some almost water-soluble (about 5-8 g per 100 ml) selfassociating ion-pair systems, which can react with metal ions and result in different complexes (Aghabozorg, Ghadermazi et al., 2006; Soleimannejad et al., 2005; Moghimi, Aghabozorg et al., 2005; Moghimi et al., 2002; Aghabozorg, Akbari & Ramezanipour, 2005; Moghimi et al., 2003). The resulting compounds, with some remaining sites as electron donors, can coordinate to many metal ions (Aghabozorg, Nakhjavan et al., 2006; Aghabozorg, Ghadermazi et al., 2006; Sheshmani et al., 2006; Moghimi, Sheshmani et al., 2005; Moghimi, Sharif et al., 2005; Aghabozorg, Moghimi et al. 2005; Aghabozorg, Dalir Kheirollahi et al., 2005; Moghimi, Alizadeh et al., 2005; Ramezanipour et al., 2005). We report here the crystal structure of the title compound, (I).

 $\ensuremath{\mathbb{C}}$ 2006 International Union of Crystallography All rights reserved

In the title compound, (I) (Fig. 1), the bond lengths and angles are within normal ranges (Allen *et al.*, 1987). The piperazine ring is not planar, having a total puckering ampli-

Received 26 July 2006 Accepted 2 August 2006

Figure 1

The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

tude, $Q_{\rm T}$, of 0.581 (3) Å and a chair conformation [$\varphi = 162.28$ (4)° and $\theta = 2.78$ (3)°] (Cremer & Pople, 1975). The Cu^{II} atom is six-coordinated by two pyridine-2,6-dicarboxylate, or (pydc)²⁻, groups, *i.e.* each (pydc)²⁻ is coordinated through one pyridine N atom and two carboxylate O atoms (Table 1). Atoms N1 and N1' of the two (pydc)²⁻ fragments occupy the axial positions, while atoms O1, O1', O3 and O3' form the equatorial plane.

The N1–Cu1–N1' angle deviates from linearity. Therefore, the coordination around Cu^{II} is distorted octahedral. There are four uncoordinated water molecules and one piperazinium ion as counter-ion, with some hydrogen bonds to water molecules and coordinated COO⁻ groups of $(pydc)^{2-}$ fragments.

Intermolecular O–H···O, N–H···O and C–H···O hydrogen bonds (Table 2) seem to be effective in the stabilization of the crystal structure. Considerable π – π stacking interactions between two aromatic rings of $(pydc)^{2-}$, with an average distances of 3.45 and 3.49 Å are observed (Fig. 2). Hydrogen bonds result in the formation of a supramolecular structure (Fig. 3). Dipole–dipole and van der Waals interactions are also effective in the packing.

Experimental

A mixture of an aqueous solution (30 ml) of the proton-transfer compound (pipzH₂)(pydc) (0.253 g, 1 mmol) and copper(II) nitrate (0.1163 g, 0.5 mmol) were stirred at room temperature, and the complexation reaction was complete after 30 min. Green crystals of (I) were obtained after four weeks at room temperature.

Crystal data

$(C_4H_{12}N_2)[Cu(C_7H_3NO_4)_2]\cdot 4H_2O$	Z = 4
$M_r = 553.97$	$D_x = 1.654 \text{ Mg m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 7.9113 (16) Å	$\mu = 1.06 \text{ mm}^{-1}$
b = 13.257 (3) Å	T = 120 (2) K
c = 21.208 (4) Å	Cube, green
$\beta = 90.414 \ (4)^{\circ}$	$0.20 \times 0.20 \times 0.20$ mm
V = 2224.2 (8) Å ³	

Data collection

Bruker SMART 1000 CCD area-
detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
$T_{\min} = 0.817, T_{\max} = 0.817$

Refinement

Table 1

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0638P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.033$	+ 0.0065P]
$vR(F^2) = 0.097$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\rm max} = 0.001$
436 reflections	$\Delta \rho_{\rm max} = 0.90 \ {\rm e} \ {\rm \AA}^{-3}$
16 parameters	$\Delta \rho_{\rm min} = -0.57 \text{ e } \text{\AA}^{-3}$
I-atom parameters constrained	

19015 measured reflections 6436 independent reflections 5270 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.029$ $\theta_{\rm max} = 30.1^{\circ}$

Table T				
Selected	geometric parameters	(Å,	°)	١.

Cu1-N1'	1.9143 (13)	O2-C1	1.2560 (17)
Cu1-N1	1.9433 (14)	O3-C7	1.2514 (19)
Cu1-O1'	2.1240 (12)	O4-C7	1.2565 (18)
Cu1-O3'	2.1368 (11)	O1'-C1'	1.2694 (19)
Cu1-O1	2.2472 (12)	O2′-C1′	1.2375 (17)
Cu1-O3	2.2674 (11)	O3′-C7′	1.2768 (19)
O1-C1	1.2559 (18)	O4′-C7′	1.2326 (17)
N1′-Cu1-N1	173.64 (5)	O1-Cu1-O3	154.11 (4)
N1' - Cu1 - O1'	79.65 (5)	02 - C1 - O1	125.62 (14)
N1-Cu1-O1'	94.22 (4)	02 - C1 - C2	117.95 (13)
N1′-Cu1-O3′	78.71 (5)	O1-C1-C2	116.42 (13)
N1-Cu1-O3'	107.49 (4)	O3-C7-O4	126.07 (14)
O1'-Cu1-O3'	158.19 (4)	O3-C7-C6	116.27 (13)
N1'-Cu1-O1	100.21 (4)	O4-C7-C6	117.66 (13)
N1-Cu1-O1	77.70 (4)	O2'-C1'-O1'	126.71 (14)
O1'-Cu1-O1	87.96 (5)	O2'-C1'-C2'	118.32 (14)
O3'-Cu1-O1	98.50 (5)	O1'-C1'-C2'	114.95 (12)
N1′-Cu1-O3	105.64 (5)	O4′-C7′-O3′	127.05 (14)
N1-Cu1-O3	76.73 (4)	O4′-C7′-C6′	118.43 (14)
O1'-Cu1-O3	97.88 (5)	O3′-C7′-C6′	114.52 (12)
O3'-Cu1-O3	85.39 (4)		
O1′-Cu1-O1-C1	80.43 (10)	O1′-Cu1-O3-C7	-103.12 (10)
O3'-Cu1-O1-C1	-120.51(10)	O3'-Cu1-O3-C7	98.58 (10)

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1A - H1AC \cdots O4^{i}$	0.92	1.85	2.769 (2)	176
$N1A - H1AD \cdots O4W$	0.92	1.88	2.697 (2)	146
$N2A - H2AC \cdots O2^{ii}$	0.92	1.90	2.797 (2)	164
$N2A - H2AD \cdots O2'^{iii}$	0.92	1.88	2.776 (2)	163
$O1W-H1WA\cdots O1'$	0.85	1.97	2.821 (2)	176
O1W-H1 WB ···O4 ⁱ	0.85	1.97	2.821 (2)	174
$O2W-H2WA\cdots O4'$	0.85	2.09	2.929 (2)	169
$O2W - H2WB \cdot \cdot \cdot O1W^{iv}$	0.85	2.01	2.853 (2)	175
O3W−H3WA···O2	0.85	1.96	2.806 (2)	177
O3W−H3WB···O2′ ⁱⁱ	0.85	2.32	2.904 (2)	126
$C3A - H3AB \cdots O3^{i}$	0.99	2.56	3.175 (2)	120
$C4A - H4AB \cdots O1W^{iii}$	0.99	2.60	3.349 (2)	133
$C1A - H1AA \cdots O2W^{v}$	0.99	2.57	3.454 (2)	149
$C2A - H2AA \cdots O4'^{v}$	0.99	2.36	3.161 (2)	138
$C5' - H5'A \cdots O1^{vi}$	0.95	2.55	3.415 (2)	151
$C4A - H4AA \cdots O3W^{vii}$	0.99	2.48	3.264 (2)	136
Symmetry codes: (i) $-x + \frac{5}{2}, y + \frac{1}{2}, -z + \frac{1}{2};$ (iv) -x + 1, -y, -z; (vii) $x + 1,$	$-x + 2, -y + x - \frac{1}{2}, -y + y - \frac{1}{2}, -y + \frac{1}{2}, -y +$	+1, -z; (ii) $+\frac{1}{2}, z - \frac{1}{2};$ (ii)	$ \begin{array}{c} -x + \frac{3}{2}, y + \frac{1}{2}, \\ \mathbf{x} + \frac{1}{2}, -y + \end{array} $	$-z + \frac{1}{2};$ (iii) $\frac{1}{2}, z + \frac{1}{2};$ (vi)

Figure 2

A view of the π - π stacking interactions between two aromatic rings of (I). The average distances between the planes are 3.45 and 3.49 Å.

Figure 3

A packing diagram of (I). Hydrogen bonds are shown as dashed lines.

H atoms of water molecules were located in difference syntheses and refined as riding atoms, with O–H = 0.85 Å and $U_{\rm iso}({\rm H})$ = $1.5U_{\rm eq}({\rm O})$. The remaining H atoms were positioned geometrically, with N–H = 0.92 Å (for NH₂) and C–H = 0.95 and 0.99 Å for aromatic and methylene H atoms, respectively, and constrained to ride on their parent atoms, with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C,N})$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus; program(s) used to solve structure: *SHELXTL* (Sheldrick, 1998); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

We are grateful to Islamic Azad University, Shahr-e Rey Branch, for financial support of this work. The Teacher Training University is also gratefully acknowledged.

References

- Aghabozorg, H., Akbari, S. A. & Ramezanipour, F. (2005). Acta Cryst. E61, o3242-o3244.
- Aghabozorg, H., Dalir Kheirollahi, P., Moghimi, A. & Sadr-Khanlou, E. (2005). Anal. Sci. 21, x79-x80.
- Aghabozorg, H., Ghadermazi, M., Manteghi, F. & Nakhjavan, B. (2006). Z. Anorg. Allg. Chem. In the press.
- Aghabozorg, H., Moghimi, A., Manteghi, F. & Ranjbar, M. (2005). Z. Anorg. Allg. Chem. 631, 909–913.
- Aghabozorg, H., Nakhjavan, B., Ghadermazi, M. & Ramezanipour, F. (2006). Acta Cryst. E62, m1527-m1529.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bruker (1998). SAINT-Plus (Version 6.01) and SMART (Version 5.059). Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Moghimi, A., Aghabozorg, H., Soleimannejad, J. & Ramezanipour, F. (2005). Acta Cryst. E**61**, 0442–0444.
- Moghimi, A., Alizadeh, R., Aragoni, M. C., Lipolis, V., Aghabozorg, H., Norouzi, P., Isaia, F. & Sheshmani, S. (2005). Z. Anorg. Allg. Chem. 631, 1941–1946.
- Moghimi, A., Alizadeh, R., Shokrollahi, A., Aghabozorg, H., Shamsipur, M. & Shockravi, A. (2003). *Inorg. Chem.* 42, 1616–1624.
- Moghimi, A., Ranjbar, M., Aghabozorg, H., Jalali, F., Shamsipur, M., Yap, G. A. P. & Rahbarnoohi, H. (2002). J. Mol. Struct. 605, 133–149.
- Moghimi, A., Sharif, M. A., Shokrollahi, A., Shamsipur, M. & Aghabozorg, H. (2005). Z. Anorg. Allg. Chem. 631, 902–908.
- Moghimi, A., Sheshmani, S., Shokrollahi, A., Shamsipur, M., Kickelbick, G. & Aghabozorg, H. (2005). Z. Anorg. Allg. Chem. 631, 160–169.
- Ramezanipour, F., Aghabozorg, H. & Soleimannejad, J. (2005). Acta Cryst. E61, m1194–m1196.
- Sheldrick, G. M. (1998). *SADABS* (Version 2.01) and *SHELXTL* (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheshmani, S., Aghabozorg, H., Mohammad Panah, F., Alizadeh, R., Kickelbick, G., Nakhjavan, B., Moghimi, A., Ramezanipour, F. & Aghabozorg, H. R. (2006). Z. Anorg. Allg. Chem. 632, 469–474.
- Soleimannejad, J., Sharif, M., Sheshmani, S., Alizadeh, R., Moghimi, A. & Aghabozorg, H. (2005). Anal. Sci. 21, x49-x50.